Esta web, cuyo responsable es Bubok Publishing, s.l., utiliza cookies (pequeños archivos de información que se guardan en su navegador), tanto propias como de terceros, para el funcionamiento de la web (necesarias), analíticas (análisis anónimo de su navegación en el sitio web) y de redes sociales (para que pueda interactuar con ellas). Puede consultar nuestra política de cookies. Puede aceptar las cookies, rechazarlas, configurarlas o ver más información pulsando en el botón correspondiente.
AceptarRechazarConfiguración y más información
Buscar en Bubok

Manipulación y clasificación de superficies compactas

MXN 294.33
Cantidad
+
Añadir a la cesta
Comprar ya
Pago disponible con tarjeta, transferencia y en efectivo.
También puedes:
Comprarlo en Colombia Comprarlo en Argentina Comprarlo en España
detalles del producto:
  • Autor: José Luis Rodríguez Blancas, José Fulgencio Gálvez Rodríguez
  • Estado: Público
  • N° de páginas: 110
  • Tamaño: 150x210
  • Interior: Blanco y negro
  • Maquetación: Rústica
  • Acabado portada: Brillo
  • ISBN Libro en papel: 978-84-685-4078-8
  • Última actualización: 07/09/2020

Este libro constituye un punto de partida para el estudiante de la carrera de matemáticas en el ámbito de la Topología Algebraica. Dicha rama de la Topología usa el Álgebra abstracta como herramienta para estudiar los espacios topológicos.

En particular, el objetivo principal del presente texto es la clasificación de superficies compactas y conexas. Por ello, el primer capítulo queda dedicado a una rápida revisión de conceptos y resultados de geometría diferencial, topología general, teoría de grafos y de grupos de los que se nutre la clasificación de superficies.

Seguidamente, en el Capítulo 2 se introduce el concepto de n-variedad, centrándose en el de 2-variedad o superficie, dando algunos ejemplos que pueden construirse también usando palabras y operaciones entre ellas, de modo similar a cómo se manejan presentaciones de grupos.

Por su parte, el tercero proporciona los teoremas principales de clasificación de superficies compactas y conexas, tanto sin borde como con borde, mientras que el cuarto muestra una serie de aplicaciones de lo que es un invariante topológico y que resulta ser clave en la clasificación de superficies: la característica de Euler.

Finalmente, el quinto capítulo introduce la noción de nudo y trenza, la relación existente entre ambos, y mostraremos cómo construir superficies a partir de los anteriores.

El libro culmina con un capítulo de ejercicios resueltos para complementar los ya solucionados anteriormente, y otros que se proponen al estudiante para su resolución; y la correspondiente bibliografía.

Gracias al material presentado en esta obra, el lector podrá adquirir las competencias necesarias para avanzar fácilmente en el estudio de otros invariantes de la Topología Algebraica, como el grupo de lazos de Poincaré que, en el caso de las superficies compactas, determina completamente su clasificación.

...[Leer más]
No existen comentarios sobre este libro Regístrate para comentar sobre este libro
Si necesitas ayuda, contáctame, te atenderé al instante.
ABRE UN CHAT INSTANTÁNEO SI NECESITAS AYUDA


¿Quieres que te informemos de cómo publicar tu obra? Déjanos tu teléfono y te llamamos sin compromiso.

Introduce el nombre

Introduce el teléfono

Introduce el E-mail

Introduce un email válido

Escoge el estado del manuscrito

La finalidad de la recogida de sus datos es para poder atender su solicitud de información, sin cederlos a terceros, siendo responsable del tratamiento Bubok Publishing, s.l.. La legitimación se basa en su propio consentimiento, teniendo usted derecho a acceder, rectificar y suprimir los datos, así como otros derechos, tal y como se explica en la Política de privacidad

Debes validar que no eres un robot

Gracias por contactar con Bubok, su mensaje ha sido enviado con éxito. Una persona de nuestro departamento de asesoría al cliente se pondrá en contacto contigo a la mayor brevedad.
Enviar